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Abstract. Defect prediction is a method of identifying possible locations of software defects without testing. Software tests can
be laborious and costly thus one may expect defect prediction to be a first class citizen in software engineering. Nonetheless, the
industry apparently does not see it that way as the level of practical usages is limited. The study describes the possible reasons
of the low adoption and suggests a number of improvements for defect prediction, including a confusion matrix-based model for
assessing the costs and gains. The improvements are designed to increase the level of practitioners acceptance of defect prediction
by removing the recognized by authors implementation obstacles. The obtained predictors showed acceptable performance. The
results were processed through the suggested model for assessing the costs and gains and showed the potential of significant
benefits, i.e. up to 90% of the overall cost of the considered test activities.
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1. Introduction

Defect prediction is a technique used to predict
faultiness of a given software artefact expressed in
terms of defects. It could be the number of defects
or binary information indicating whether the artefact
is defect free or not. Such a technique seems to be
very useful in the software development process. If one
knew which artefacts are defect free, one could save
efforts related to testing them. The software tests are
often estimated for up to 50% of the costs of the whole
software development (Kettunen et al. [1]). Therefore,
such savings should be substantial, but surprisingly
there is few evidence of defect prediction implementa-
tions in real life software development processes and
all of the few exceptions most likely were conducted in
close collaboration with defect prediction researchers
([2,3,4]), i.e. the companies were not able to imple-
ment the prediction by their own. Moreover, there are
reports from research departments of software vendors
with complaints regarding challenges related to con-
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vincing project managers to start using the defect pre-
diction models (Weyuker and Ostrand [5]). One may
wonder why as one of the earliest defect prediction
models was suggested in the 70’ (Halstead [6]) and
since then it is intensively investigated by many re-
searchers (Hall et al. [7] or Jureczko and Madeyski [8])
and the prediction results are encouraging. According
to Hall et al. [7] the model precision is usually close to
0.65 and after calibration it can be much better (e.g. up
to 0.97 after performing feature selection and choosing
optimal classifier as reported by Shivaji et al. [9]). We
considered a survey aiming at characterizing the rea-
sons of low adoption of the technique. Unfortunately,
preliminary interviews with people deciding about the
shape of development process show very limited un-
derstanding of the concept of defect prediction (there
was no case where the defect prediction was even con-
sidered). Thus a survey might be of low value. It makes
us thinking about the possibility of launching defect
prediction program in our own environments and we
faced challenges related to discrepancies between de-
fect prediction assumptions and the real life software
development processes. We identified challenges that
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in our opinion should be solved before recommend-
ing defect prediction. Let us present the issues and our
concerns.

Issue 1: the mapping of defects to the prediction
unit of analysis. According to Hall et al. [7] most of
the defect prediction models are focused on files and
classes. The files and classes pointed out by the model
are recommended for code review or special care dur-
ing testing (Weyuker et al. [10]), in the case of the
aforementioned artefacts that would be unit tests. Let
us first consider what is meant by the fact that a class
or file is defective in the context of defect prediction.
Most of the researchers (e.g.[11,12]) identify the de-
fects in files and classes using issue tracking systems
or commit messages. The procedure is usually as fol-
lows. Defect reports are extracted from the issue track-
ing system and subsequently from each defect report
its identifier is extracted. Then the comments in the
project’s version control system are scanned for occur-
rences of the aforementioned identifier. When there is
a match, all classes or files that were modified in the
identified version control commit are marked to be de-
fective. In consequence, there can be a defect report
regarding malfunction on a system business level, vis-
ible to the end–users and a number of classes that were
changed during defect fixing. When the defect root
cause comes from a technical flaw of the implemen-
tation (e.g. error in sorting algorithm) there is nothing
wrong with that. Unfortunately there is always a frac-
tion of defects with the root cause outside the source
code (e.g. misinterpretation of requirements). Such de-
fects typically result in a number of changes done in
coupled classes. Some of the changes address more or
less directly the defect whereas others are side effect
adjustments in the coupled code. In order to better il-
lustrate this case let us present an example. One of the
commonly investigated projects with respect to defect
prediction is JEdit e.g. in [13,14]. Among others, there
is a defect report with number 2739: ’Indentation of
Javascript embedded in HTML is broken’1. It has been
fixed in revision 8093 by introducing changes to 5 files.
One of them is JEditTextArea.java where one line was
changed, that is:

indent = buffer.isElectricKey(ch);
to indent = buffer.isElectricKey(ch,
caretLine);

An additional parameter is passed to the isElec-
tricKey method. Does it mean that the method was

1http://sourceforge.net/p/jedit/bugs/2739/ (last access on
29/11/2018)

defective before the change? The answer is not clear,
specifically because the ’buffer’ class (i.e. JEditBuffer)
was changed in the same commit. We ended up with
a real defect mapped into changes in the source code
that really solve it which is not exactly the same as
a set of defective classes. Nonetheless, the prediction
model is trained to predict them as defective, whereas
in fact we are not sure about their real status. Further-
more, it is hardly possible that a unit test or code re-
view of the JEditTextArea.java file will result in a cor-
rective action regarding the isElectricKey method, as
without the broader context that comes from the de-
fect report, it is not clear that there is something wrong
with the method call. Defect prediction output point-
ing at the JEditTextArea.java would be useless for a
practitioner despite being correct. Furthermore, auto-
matic identification of technical issues is the goal of
static code analysis which already have good tool sup-
port e.g. FindBugsTM2, SonarQube TM3. Not all defects
are similar to the one described above, but neither it is
an exceptional corner case.

Issue 2: no clear definition of defect prediction
data collection program. Another possible issue re-
lated to the practical application of defect prediction
regards defects distribution, or more specifically, de-
fect reports distribution. The researchers do not report
if their data resulting from uniform tests of the whole
system. Possibly, the opposite is true since it is recom-
mended to focus test efforts on new and changed func-
tionalities. Namely, it is possible that the ’prediction’
shows which parts of the system were tested. In other
words, the following scenario is plausible. Before the
release, some of the features (the new or changed ones)
are intensively tested and in consequence a number
of defects are reported whereas the rest of the sys-
tems goes only through light regression tests that do
not result in many additional defect reports. The iden-
tified defects are used to train the prediction model.
However, the tests were conducted in such a way that
the vast majority of defects were identified in certain
parts of the system. In consequence, the model is ad-
justed to the design flaws and development history of
the tested parts of the system instead of to the defects.
Whereas the theory behind software metrics based de-
fect prediction suggests that some design flaws (e.g.
high coupling) increase the possibility of committing
a defect, and thus the prediction model should recog-

2http://www.findbugs.sourceforge.net (last access on 29/11/2018)
3http://www.sonarqube.org (last access on 29/11/2018)
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nize those design flaws. A similar scenario is also pos-
sible for post–release defects as the customer may fol-
low the same principles during validation (i.e. focus on
new and changed functionalities) or simply train users
in only what is new in a given release. The scope of
conducted tests should not be ignored in the evalua-
tion of defect prediction efficiency. Claiming that de-
fect prediction works for entire systems when only half
of it is considered for the quality assurance activities
may misleadingly increase prediction efficiency. What
is the value of prediction precision equal to 0.97 when
half of the system was not tested at all and the predictor
just learned the rule behind excluding certain software
artefacts from testing?

Issue 3: no estimation of return of investment.
Defect prediction requires a software measurement
program and thus does not come for free. Since some
investments must be made, it is crucial to assess the
future benefits that may come from using defect pre-
diction and confront them with the costs. Fortunately,
the costs of metrics collection have already been ana-
lyzed e.g. [15], but what the benefits look like is not so
clear. There are two concepts of employing defect pre-
diction in software development. Weyuker et al. [10]
suggested to use the model output as a trigger for ad-
ditional tests and code reviews which should result in
improving software quality and hence reduce the num-
ber of post–release defects. Briand et al. [16] pointed
out the possibility of savings regarding not testing arte-
facts that were predicted to be defect free. This work is
focused on the latter as detailed empirical data (which
unfortunately is unavailable for us) is needed for the
evaluation of the first one ([17]). We suggest a method
of assessing the benefits (and costs) of not testing soft-
ware artefacts that presumably are defect free.

Issue 4: poor tool support. Developing tools for in-
dustry is not a something that can be done as a part
of research paper. Nonetheless, it is a very important
obstacle that may not be ignored. Yang et al. [18] re-
ported, that industrial practitioners are more interested
in in the interpretations and follow-up that occur after
prediction than in just the mining itself. Following the
same this work suggests a number of changes to the
design of defect prediction in order to address as many
of the aforementioned issues as possible.

The usefulness of the redefined defect prediction
is tested on two open–source projects using the sug-
gested model for assessing costs and gains. The rest
of this paper is organized as follows. The suggested
approach to defect prediction as well as the method
of assessing prediction gains and cost are described

in the next section. The Section 3 contains the de-
tailed description of our empirical investigation aimed
at predicting defects re–opens. Threats to validity are
discussed in Section 4. Related studies concerning
re–opens prediction and the evaluation of costs and
gains of defect prediction are presented in Section 5.
The conclusions, contributions and plans for future re-
search are discussed in Section 6.

2. Proposed approach for implementing and
assessing defect prediction

The goal of this work is to redesign the defect pre-
diction by suggesting approaches that avoid or resolve
the issues mentioned in introduction. We conducted an
empirical experiment that employs the defect predic-
tion in such a way that makes the practical applica-
tion of prediction outcomes straightforward and mini-
mizes the possibility of misleading evaluation of pre-
diction effects. Additionally, we suggest a model for
assessment of the defect prediction application costs
and benefits.

2.1. The place of defect prediction in software
development

The defect prediction models that use larger arte-
facts as the unit of analysis seem to be more handy as
it is easier to map them to system level requirements
and due to the size, they come with a broader context.
Hall and Fenton [7] reported modules which unfortu-
nately are vaguely defined. We believe that the use-
fulness of such models depends on what in fact the
module is and what the software development process
looks like. Nonetheless, in our opinion the larger arte-
facts are a promising direction and therefore constitute
our primary concern.

Let us consider two scenarios that commonly emerge
in software development, i.e. implementation of a new
feature and correction of a defect. Both of them can be
very complex, but for our considerations we can limit
them to several crucial steps. In the case of the new
feature, there is the writing of the source code; after-
wards the tests should be conducted and then, accord-
ing to the tests results, the feature is released or goes
back to the development team for further improve-
ments and tests, which creates a loop in the process.
Eventually, the feature is released and in consequence
the end users start to use it. Unfortunately, the tests do
not guarantee correctness and it is possible that after
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Fig. 1. Software implementation: new features & bugfixing.

the release some hidden defect will emerge. Such situ-
ations create losses for the software vendor regarding
efforts contributed to defect fixing as well as ruining
the brand image.

The second scenario, i.e. defect correction (com-
monly called bug fixing) is in fact very similar. When
a new defect report appears, some source code must
be written or changed, subsequently the defect correc-
tion should be tested and according to the test result,
released or re–implemented. Due to the similarities, a
single activity diagram can be used to render both of
them, that is Fig. 1.

According to the Fig. 1 there is a saving possibility.
By knowing upfront that something is implemented
correctly we can skip the tests without harm to the
system quality (in some cases such simplification may
be impossible due to regulations, e.g. development of
medical devices.Unfortunately, this is knowledge the
practitioners do not posses. It is only possible to pre-
dict the correctness of implementation and this is what
the defect prediction models are about. When consid-
ering the usage of defect prediction the software im-
plementation diagram should be extended as it is pre-
sented on Fig. 2. The defect prediction is used to de-
cide whether tests should be conducted. Software ven-
dors are not eager to plan the tests according to pre-
diction results, i.e. to chose upfront to not test some of
the artefacts. However, when there are not enough re-
sources to meet the deadline some hard decisions must
be made. When postponing the deadline is not an op-
tion the only alternative is to skip some of the tests.
The number of skipped test will presumably depend
on the available resources whereas defect prediction

will only be used to prioritize them. Nonetheless, the
available resources are not a feature of defect predic-
tion and thus should not be considered as a factor in
defect prediction costs and gains assessment. This is a
simplification that deviates from the real resources al-
location, but without significantly worsening the esti-
mation quality of the expected costs and gains which
is introduced in the next subsection. The estimation is
acceptable since after testing all artifacts marked as de-
fective we can do more tests i.e. trading some of the
saved resources for lower risk of releasing a defect.

There are two different defect prediction units of
analysis that are compatible with the flow presented on
Fig. 2: features and defect fixes and in order to have
an easy commercial implementation we suggest to not
use other ones. When the unit of analysis is smaller
(e.g. the commonly investigated files or classes) it is
challenging to define a set of actions that should be ex-
ecuted in response to the prediction results. The file or
class level artefact are covered by unit tests which are
usually automated and created not only to detect de-
fects but also to prevent regression, enable safe refac-
torings and sometimes as a low level documentation,
hence optimizing the number of unit tests according
to prediction outcome may have unexpected conse-
quences and makes the impact of defect prediction
application hardly possible to evaluate. Furthermore,
even the two suggested units of analysis may create
complications. A defect fix which is the object of re–
opens prediction is usually small and thus we do not
expect significant deviations from the presented flows.
However, features differ in size and not always are
autonomous. When a project is developed in phases
and each of the phases spans a number of possibly
tightly coupled which each other features it might be
not reasonable to analyze each feature in separation
as there is considerable risk of introducing defect in
feature B when developing feature A. We can con-
sider a feature autonomous for the sake of defect pre-
diction only when regression in other features can be
guarded without manual tests and thus there (in the
other features) is no significant test effort during de-
velopment of the autonomous feature. Otherwise the
scope of tests executed during verification of a feature
exceeds the boundaries of the feature which makes rea-
sonable releasing features in bulks to reduce the num-
ber of repetitions of the same test scenarios and dra-
matically changes the flow. As a consequence, the sug-
gested in this work solution is applicable to iterative
processes that are driven by features (e.g. Scrum) and
take care of modularity (e.g. micro services architec-
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Fig. 2. Software implementation with defect prediction. In brack-
ets there are probabilities and efforts used in the discussed in next
subsection model.

ture). Application in other processes (e.g. waterfall) or
designs (e.g. monolith) may not work as expected.

2.2. Model for defect prediction expected costs and
gains assessment

The defect predictions are not perfect. Sometimes,
the prediction is wrong and the low quality source
code that would be reported during tests may be re-
leased and hence there is a loss for the software ven-
dor. Therefore, it is not obvious that the process de-
picted on Fig. 2 is more cost–effective. Let us consider
four different scenarios in order to evaluate the overall
effect of employing a defect prediction model. The in-
tention of the evaluation is to show the gain (or loss) in
comparison to a baseline which is testing all software
artefacts.

– Scenario faulty&faulty (implementation: faulty,
prediction: faulty). The artefacts are tested and
thus there is no deviation from the baseline.

– Scenario faulty&ok (implementation: faulty, pre-
diction: OK). According to the prediction results
the software artefacts are not tested, but in fact
they are incorrect and thus should be tested and
corrected. Not all defects are discovered during
tests, thus the testing effectiveness should be con-
sidered in this scenario. In consequence, there is
a loss related to releasing system with defects.

– Scenario ok&faulty (implementation: OK, pre-
diction: faulty). The artefacts are tested and thus
there is no deviation from the baseline.

– Scenario ok&ok (implementation: OK, predic-
tion: OK). The artefacts are correct and are not
tested. Thus, there are savings that come from
skipping the tests.

In order to render the evaluation in a more formal
way, let us define: If – implementation not correct
(faulty), Iok – implementation correct, Cpr – post–
release cost connected with releasing a defective soft-
ware artefact, Ct – costs of testing a software artefact,
Prok – prediction result: implementation is ok, e –
testing effectiveness, where 0 ≤ e ≤ 1 and e = 1 rep-
resents detecting all defects in the inspected software
artefacts, G – expected gain (or loss when G is below
0) of prediction model application for certain artefact,
i.e. the gain that comes from employing the model in
software development with respect to a certain arte-
fact, TG – total gain of prediction model application,
i.e. the sum of values of G calculated for all artefacts,
P (x) – probability of x, we are using also conditional
probabilities, x – average value of x, n - number of
software artefacts.

G = P (Iok) ∗ P (Prok|Iok) ∗ Ct − P (If ) ∗ P (Prok|If ) ∗ (e ∗ Cpr − Ct) (1)

The value of G equals the difference between the gain
that comes from scenario ok&ok and loss from sce-
nario faulty&ok and is expressed in the same unit as
Cpr and Ct which can be man–days as well as money.
The scenario ok&ok is the probability of the occur-
rence of two random events i.e. correct implementation
and defect prediction outcome stating that the imple-
mentation is correct, multiplied by the costs of testing.
In other words it is the expected saving from not test-
ing the correctly implemented features. The scenario
faulty&ok is the probability of two random events, i.e.
faulty implementation and prediction claiming that the
very same functionality is defect free, multiplied by
the expected cost of releasing defective functionality.
The cost of releasing defective functionality is reduced
by the value of costs of the tests, since according to
prediction outcome tests are not conducted. In other
words, the scenario represents the expected loss being
a result of skipping tests of defective functionality be-
cause of encouraging prediction results.

The equation can be reformulated in a more com-
pact form when assuming that P (gain) = P (Iok) ∗
P (Prok|Iok) and P (loss) = P (If ) ∗ P (Prok|If ):

G = P (gain) ∗Ct−P (loss) ∗ (e ∗Cpr−Ct) (2)

Unfortunately even the compact form is not handy
when calculating TG since it would be necessary to
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know the value of G for each of the artefact that
goes through the defect prediction process. And this
is knowledge we cannot expect in a real life software
development process. In order to make it applicable
in practice, we need a simplifying assumption, i.e. the
testing cost is not correlated with neither actual imple-
mentation status (correct, not correct) nor defect pre-
diction results (the two later ones should be correlated
with each other). With the aforementioned assumption,
TG can be calculated using the following formula:

TG = n∗(P (gain)∗Ct−P (loss)∗(e∗Cpr−Ct)) (3)

Please note that the P (gain) and P (loss) can be esti-
mated using confusion matrix:

P (gain) =
artefacts in scenario ok&ok

n
(4)

P (loss) =
items in scenario faulty&ok

n
(5)

The Cpr, Ct as well as testing effectiveness can be
company or project specific. Hence, we advise to es-
timate them using company historical data or expert
opinion. We recommend to overestimate test effective-
ness and the relation of Cpr to Ct when using the
Equation 3 in making decision about using defect pre-
diction. Such estimations will lead to underestimating
the TG and as a consequence the defect prediction re-
sults should not be worse than expected. We followed
the recommendation in the experiments presented in
next section. Test effectiveness represents the propor-
tion of defects identified during tests. When is very
low, the majority of defects pass tests and hence testing
is not economically justified regardless of the quality
of prediction. When Cpr is much bigger than Ct we set
high expectations for the defect prediction as releasing
a defect becomes relatively expensive while tests are
cheap.

3. Experiment

We see two different defect prediction units of anal-
ysis that corresponds well with the presented in previ-
ous section considerations, those are features and de-
fect ”re-opens”. In this section we are applying defect
prediction to the later ones. The purpose of the exper-
iment was to predict whether and in what conditions
a bug which was resolved can be "re–opened" in the
future. The experiment is based on data collected from
two open–source projects: Flume and Oozie.

3.1. Experiments design

In order to perform classification we created an ap-
plication using WEKA that is a powerful tool for data
mining. It gives a possibility to classify data using var-
ious classification methods, feature selection, visualize
obtained classification results (e.g. decision trees), etc.

To validate the performance of a prediction we used
10–fold cross–validation method (CV). After splitting
data into training and test sets, in the next step a fea-
ture selection on training set was performed for each
fold. Thanks to that we could select a subset of features
which are the most appropriate for predicting whether
a bug can reappear in the future. In the feature selec-
tion process we used Best-First Search algorithm. This
algorithm connects advantages of breadth–first search-
ing (prevents the situation of finding a ’dead end’) and
depth of the first search (finding solution without ex-
amining every ’competitive’ resolution). Generally, the
algorithm is used for searching the graph, but in our
situation it is suitable too. The Best–First Search algo-
rithm is based on choosing every step in this option, for
which estimation of evaluation function is the best. In
our case Best–First searches the space of feature sub-
sets by greedy hill-climbing augmented with a back-
tracking facility. As evaluating function we chose the
’ClassifierSubsetEval’ function. It evaluates attribute
subsets on training data and uses a classifier to estimate
the ’merit’ of a set of attributes. We used J48 classifier
as an evaluator.

The next step was data classification. Number of in-
stances belonging to specific classes: "Bad" or "Good"
in predicting if bug can be re–opened ("Bad" means,
that bug can be re–opened and "Good" that it will prob-
ably not happen) was imbalanced. In initial dataset,
a number of instances with "Good" value for "Re–
opened" attribute was much more numerous than those
with "Bad" value in both Flume and Oozie projects. To
solve this problem we used SMOTE (Synthetic Minor-
ity Over–sampling Technique) [19].

After including SMOTE, a classification method
was chosen. According to [7] among the most fre-
quently used in defect prediction are Decision Trees,
Regression-based and Bayesian approaches. Hence,
we decided to employ two from each of those cat-
egories: J48graft, BFTree, Logistic, Classification-
ViaRegression, BayesNet and NaiveBayesSimple. We
used WEKA with default classifiers parameters values,
only the threshold value has been raised to 0.85 to re-
flect the loss function which in our case is asymmetric.
We recommend using a value that is related to the ratio
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of the cost of releasing defect (e∗Cpr−Ct) to the cost
of testing (Ct).

To evaluate the obtained results we used Recall
(probability of correct classification of a faulty arte-
fact) and Precision (proportion of correctly predicted
faulty modules amongst all modules classified as
faulty).

3.2. Data collection

We investigated two open-source projects: Oozie
and Flume with respect to predicting defect re–opens.
Oozie is a server–based workflow scheduling and co-
ordination system to manage data processing jobs for
Apache Hadoop. Oozie has been developed since Au-
gust 2011 and by April 2017 it had 191,960 lines
of code (the aforementioned dates provide the data
collection time interval). More information about this
project is available on http://oozie.apache.org/.
The second project, Flume, is a distributed, reliable,
and highly available service for efficiently collecting,
aggregating, and moving large amounts of log data. It
has a simple and flexible architecture based on stream-
ing data flows. Flume is robust and fault tolerant with
tuneable reliability mechanisms It uses a simple exten-
sible data model that allows for online analytic appli-
cation (http://flume.apache.org/). Project has been
developed since June 2010 and has 93,429 lines of
code (April 2017). Information about issues related
with both projects can be found at https://issues.
apache.org/jira/.

The two projects were chosen due to their rich his-
tory about defects including re–opens, i.e. they have
1,087 bugs and 77 bugs which have (or had) status
"Re–opened" (Flume) and 1,484 bugs and 429 have
a "Re–opened" status (Oozie). To collect data about
defects we used an application developed at Wroclaw
University of Science and Technology – QualitySpy
[20]. It is a tool for collecting data about the history of
issues in software projects stored in issue tracking sys-
tems (e.g. Atlassian JIRA) and other software develop-
ment systems. More information about QualitySpy can
be found on https://opendce.atlassian.net/wiki/

spaces/QS. Using this tool we collected 18 attributes –
17 independent variables and the object of prediction,
i.e. whether a defect has been re–opened:

– created – date of issue creation,
– resolved – date of issue first resolution,
– fixing duration – time from issue creation to first

resolution (in days),

– resolution day of week – day of week of the issue
first resolution,

– resolution day of month – day of month of the
issue first resolution,

– resolution day of year – day of year of the issue
first resolution,

– resolution month – day of month of the issue first
resolution,

– resolution hour – hour of day of the issue first
resolution,

– component in which bug was found,
– environment in which bug occurred (operating

system, Java version, etc.),
– initial priority – one of the following: trivial, mi-

nor, major, critical, blocker,
– advancement of project – days between creation

of the first issue in project and current issue cre-
ation,

– number of defects reported by reporter – num-
ber of defects reported by the reporter of current
issue before the current issue,

– number of defects resolved by assignee – num-
ber of defects resolved by person assigned to cur-
rent issue before current issue resolution,

– number of changes registered in the issue track-
ing system before current issue,

– number of comments in the issue tracking sys-
tem, in the current issue,

– number of changes of the assignee before issue
resolution date,

– re–opened – if the issue was re–opened after the
first resolution.

Most of selected attributes was suggested by [21].
We investigated attributes which can be divided into 4
categories: work habits (created, resolved, attributes
regarding resolution time), bug report (component,
environment, advancement of project, initial priority),
bug fix (fixing duration, re–open, number of changes,
number of comments), people (reported by reporter,
resolved by assignee, assignee changes). Attributes
from this categories can be use to check what have
the biggest influence on predicting if bug can be re–
opened in future. The collected data were published
online4.

4https://www.researchgate.net/profile/Marian_

Jureczko/publication/271735532_Oozie_Flume_-_

collected_data/data/596108f8aca2728c11cf1067/

flume-input-data.arff and https://www.researchgate.

net/profile/Marian_Jureczko/publication/
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3.2.1. Experiment result
In this section we want to put results of our research

about predicting whether bug can be re–opened in fu-
ture. Results obtained for the Flume project are pre-
sented in Tab. 1 and for Oozie in Tab. 2.

Ten–fold cross validation with the SMOTE tech-
nique for data balancing was used and resulted in sat-
isfactory outcomes, i.e. Recall up to 0.982 and Preci-
sion up to 0.997 in the Flume project and Recall up to
0.946 and Precision up to 0.999 in the Oozie project.
Nonetheless, the confusion matrix is the most interest-
ing outcome with respect to the defect prediction costs
and gains assessment. It shows in the case of the Flume
project that there were 1009 correctly resolved defects
(nok = 1009) and 77 re–opened ones (nf = 77).
The further calculations are done using the equation
3. To get the final gain (or cost) of defect prediction,
two additional variables must be evaluated, i.e. the av-
erage cost of testing a bugfix (Ct) and the average
post–release cost of releasing an invalid bugfix (Cpr).
The Ct was assumed to be equal to 2 working hours 5

whilst Cpr was evaluated using the 1:10:100 rule 6 and
thus assumed to be equal to 20 working hours.

According to Tab. 1 the best prediction model (i.e.
BayesNet) can save 1845 working hours in the test-
ing process. The tests’ effectiveness was assumed to be
equal 1 for the calculations which represents the per-
fect effectiveness. It is a defensive approach as it min-
imizes the expected gain produced by defect predic-
tion. Please note that the gain shall be considered as
a difference in costs in comparison with an approach
where each of the software artefacts is tested, which is
85% of the overall bugfixing testing cost (the cost was
estimated using the aforementioned value of Ct).

The same evaluation procedure and the same values
of Ct as well as of Cpr were used for the Oozie project.
Moreover, there were 1055 correctly resolved defects
(nok = 1055) and 429 re–opened ones (nf = 429). In
the case of the Oozie project, the fraction of incorrectly

271735532_Oozie_Flume_-_collected_data/data/

596109250f7e9b81943f66f7/oozie-input-data.arff
5 It is a row estimate based on figure given by Hryszko and

Madeyski [22], they reported that fixing and testing a defects costs 3
hours on average.

6 The rule recently became very popular among practitioners,
e.g. www.dqglobal.com/why-data-should-be-a-business-

asset-the-1-10-100-rule (last access on 29/11/2018). We are
using the rule to cover not only the costs of bugfix implementation
which are usually smaller but also the costs of reverting defect side
effects, e.g. data migrations cleaning broken data or adjustments to
changes in published API.

resolved defects is greater, the data is more balanced,
and in consequence there are fewer cases with the pos-
sibility of making savings during tests. Nonetheless,
the number of man hours that can be saved is consider-
able and according to Tab. 2 in the case of the best clas-
sifier (BayesNet) is equal to 1176, which is 39.6% of
the overall bugfixing testing cost. In the worst case TG
is negative which represent loss. We used the 1:10:100
rule thus the penalty for releasing a faulty artefact is
significantly greater than the gain from not testing a
defect free one. As a consequence there are savings
only when classification results are of high quality.

3.3. Other studies

The experiments cover very limited scope while
there are similar studies conducted by other researchers.
This section applies suggested model for defect predic-
tion costs and gains assessment to publicly available
defect reopens prediction results. We went through all
the studies mentioned in section 5 and selected those
that provide all the data required by the aforemen-
tioned model which in fact is the confusion matrix.
The confusion matrix is not published frequently, but
there are methods to restore it suggested by Bowes et
al. [23].

Experiments regarding defects reopens prediction
were conducted by An et al. [24], Jureczko [25], Shi-
hab et al. [21], Xia et al. [26] and Xia et al. [27]. An
et al. [24] was focused on supplementary bug fixes
which unfortunately changes the context and makes
our model inapplicable. Thus, we excluded this study.
Jureczko [25] and Xia et al. [27] did not publish
enough data to restore the confusion matrix. Xia et al.
[26] investigated one of the projects analyzed by Shi-
hab et al. [21], hence we choose only the later one (the
confusion matrix was restored using equations sug-
gested by Bowes et al. [23]). As a consequence, there
were only two study that can contribute to external
validity of the suggested model for defect prediction
costs and gains assessment, i.e. [21] and [25]. [21] is an
experiment conducted on three open-source projects:
Eclipse, Apache HTTP and OpenOffice. The authors
investigated prediction performance with respect to the
selected subset of dependent variables. For the sake of
simplicity we consider only the results obtained for all
dependent variables. Three different classification al-
gorithms are considered. The fourth one analyzed by
Shihab et al. [21], i.e. Zero–R, is excluded. The Zero-R
algorithm predicted the majority class, which was not
re-opened and hence it did not detect them. Restoring
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Table 1
Classification results for "Re–opens" prediction in Flume project

Classifier TP
FN

FP
TN Recall Precision TG [h] % of savings

J48graft 44
3

33
1006 .936 .571 1958 90.1

BFTree 44
8

33
1001 .846 .571 1858 85.5

Logistic 58
154

19
855 .274 .753 -1062 -48.9

ClassificationViaRegr. 25
9

52
1000 .735 .325 1838 84.6

BayesNet 58
3

19
1006 .958 .782 1959 89.3

NaiveBayesSimple 63
245

14
764 .178 .791 -2882 -133.9

Table 2
Classification results for "Re–opens" prediction in Oozie project

Classifier TP
FN

FP
TN Recall Precision TG [h] % of savings

J48graft 177
3

252
1052 .983 .413 2050 69.0

BFTree 252
9

177
1046 .966 .587 1930 65.0

Logistic 375
195

54
860 .658 .874 -1790 -60.0

ClassificationViaRegr. 67
1

362
1054 .985 .156 2090 70.4

BayesNet 369
8

60
1047 .979 .860 1950 65.7

NaiveBayesSimple 375
195

54
860 .658 .874 -1790 -60.0

the confusion matrix for the Zero-R algorithm would
be challenging and the results could be not representa-
tive.

The results are presented in Table 3. We used the
restored confusion matrix to calculate costs and gains.
The results are very encouraging as the possibility of
savings varies between 4 % to 81.9 % of estimated cost
of defects testing which is in our simulation the ap-
proximation of cost of testing all bugfixes. It is also
noteworthy that this is in line with the results obtained
for the Flume and Oozie projects.

4. Threats to validity

This section evaluates the trustworthiness of the ob-
tained results and conclusions, and reports all aspects
of this study that are possibly affected by the authors
subjective point of view.

4.1. Construct validity

The threats to construct validity refers to the extent
to which the employed measures accurately represent
the theoretical concepts they are intended to measure.
The data about defects were collected directly from
an issue tracking system. The employed data mostly
comes from issue tracking systems which is a data
source connected with a well known threat. Accord-

ing to Antoniol et al. [28] a fraction of the reports are
not connected with corrective actions. We had no reli-
able means to identify and correct the aforementioned
threat, thus we decided to take the data as is and do not
introduce changes.

A method of defect prediction evaluation was sug-
gested and assessed on five projects. The assessment is
in fact a simulation conducted on real projects. Each of
the investigated software artefacts come from the real
world, but the application of defect prediction and its
results are the authors expectation of a most plausible
scenario. Therefore, an empirical evaluation conducted
on a real project is a natural direction of further devel-
opment that will allow to mitigate the aforementioned
threat to validity.

4.2. External validity

Limited number of projects were investigated. To
some extent we improved the external validity by us-
ing prediction results published by other researchers.
Nonetheless, it is hard to justify whether the experi-
ment’s results can be extrapolated and make sense for
other projects. There is no basis for claiming that a
general rule has been discovered. It is rather a prove
of concept – it has been shown that there exist projects
for which the suggested approach to defect prediction
is beneficial. We believe that the results are applicable
to a wide scope of projects, however, providing evi-
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Table 3
Classification results for projects investigated by Shihab et al. [21]

Project Algorithm TN
FP

FN
TP Recall Precision TG [h] % of savings

Eclipse Decision tree 1107
166

76
181 .705 .521 854 27.9

Eclipse Naive Bayes 1091
191

65
183 .739 .490 1017 33.2

Eclipse Logistic reg 1077
203

82
168 .672 .453 680 22.2

Apache HTTP Decision tree 12614
806

55
884 .941 .523 24230 84.4

Apache HTTP Naive Bayes 12672
751

283
653 .698 .465 20259 70.5

Apache HTTP Logistic reg 12577
845

203
734 .783 .465 21491 74.8

OpenOffice Decision tree 27051
2566

1130
9426 .893 .786 33771 42.0

OpenOffice Naive Bayes 19438
10120

1008
9607 .905 .487 20725 25.8

OpenOffice Logistic reg 25471
4084

1179
9439 .893 .786 29727 36.9

dence requires further empirical investigation. It must
be also stated that it was not our intention to discover
a silver bullet, an approach that is useful in every sin-
gle project. In consequence, we believe that follow-
ing project characteristics may make the suggested ap-
proach inapplicable:

– not following the work–flow presented on Fig. 1;
– using automated tests instead of manual (for au-

tomated tests the gains and costs should be calcu-
lated differently);

– unacceptable possibility of regression that ex-
ceeds the boundaries of the object of prediction
but is caused by its development;

– regulations forbidding test optimization, e.g. skip-
ping some of the tests.

4.3. Internal validity

The threats to internal validity refer to the misinter-
pretation of the true cause of the obtained results.

The conducted experiments are based on a limited
number of data sources, i.e. the issue tracking sys-
tem. There is considerable possibility that employing
additional data sources results in better prediction ef-
ficiency. Nonetheless, we decided not to pursue effi-
ciency related goals but rather keep the track on the
primary objective which is removing obstacles related
to defect prediction practical application. The selec-
tion of data source for predicting re–opens corresponds
with findings of other researchers, e.g. [21].

4.4. Reliability

The study design is driven by reasons for low level
applicability of defect prediction in industry identified
by authors. Each of the authors have industrial expe-
rience, from 5 to 20 years. Thereby, one may expect

that the reasoning is not detached from software devel-
opment reality and corresponds with what the indus-
try copes with. Nevertheless, it is a subjective point of
view and it is possible that some of the assumptions
are false or some important factors were overseen.

5. Related work

This work touches several different concepts. The
main driver and contribution regards the suggested
method of implementation and costs–benefits assess-
ment of defect prediction. Therefore, this section is
mostly focused on such research. Additionally we con-
ducted an empirical experiment and thereby we also
mention studies investigating defect prediction in con-
text of similar experiments.

5.1. Costs and benefits of defect prediction

According to Arora et al. [29] most of the work re-
garding defect prediction has been done considering
its ease of use and very few of them have focused on
its economical position but determining the answer to
when and how much benefit it has is very important.
Among the few exceptions are the study conducted by
Khoshgoftaar et al. [30] and [31] where costs of mis-
classification was investigated or by Jiang et al. [32]
that suggested cost curves as a complementary predic-
tion technique.

Weyuker et al. [10] examined six large industrial
systems. The evidences they collected were used to
build a defect prediction model which later become the
core of an automated defect prediction system. In other
words, the authors created and reported a tool (they de-
clared that it is a prototype of a tool) that requires no
advanced knowledge regarding data mining nor soft-
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ware engineering but allows to generate defect predic-
tion for the files in a release that is about to enter the
system testing phase. The tool is considered helpful in
scheduling test execution and assigning test resources.
The tool output can also point places (i.e. files) for ad-
ditional code inspections. In consequence, this should
lead, according to the authors, to faster defects identi-
fication and therefore testing costs reduction (the au-
thors recommend against skipping quality related ac-
tivities in files predicted to be defect free). The proto-
type had been presented to practitioners and was rec-
ognized as interesting and useful. Nonetheless, the au-
thors admitted that it is difficult to get customers and
thus they were not able to report field data regarding
costs and benefits of installing the model in a real soft-
ware development process.

Bell et al. [17] discussed empirical assessment of
the impact of incorporating defect predictions into the
software development process. They considered sev-
eral experiment designs including randomized con-
trolled trial, randomized controlled trial with crossover
design and considering individual files as subject. The
conclusion was that the most suitable is a hybrid ap-
proach where a large system with a number of inde-
pendent subsystems is examined. In that case, subsys-
tems are assigned at random to groups of testers and
developers with and without feedback from the pre-
diction model. The impact assessment is considered to
be challenging since according to the authors there are
no reports of industrial application and the assessment
method has not been investigated and presented in the
literature. It also must be noted that we have narrowed
in this paper the issue regarding assessment and the
scenarios we are considering were identified by Bell et
al. [17] as using prediction model ’to speed up the test-
ing process, and advance the release date of a release’
that should result in cost savings which is consistent
with our interpretation.

In contrast to the aforementioned works, Briand et
al. [16] suggested a formal method of evaluating the
results of using a defect prediction model. The one pre-
sented by Briand et al. [16] is in many aspects simi-
lar to ours, thus let us focus on the differences. Other
objects of prediction were considered which is cru-
cial with respect to this study goals. We used defect
re–opens and feature defectiveness whereas Briand et
al. [16] assumed that it is software class and thus the
main driver of their model design was class size (ex-
pressed using number of lines), which is inadequate
in our case. Another relevant difference regards the
baseline. We compared the defect predictions against

a scenario where all artefacts are tested. Briand et al.
[16] referred to a prediction model with outcomes be-
ing proportional to the size of the considered software
class. This difference had a significant impact on the
final costs and gains model equation, as using another
baseline allowed other equation transformations.

The gap between defect prediction research and
commercial applications was also recognized by Hryszko
and Madeyski [22]. The authors addressed it mostly by
providing tool support, but also by analyzing the ben-
efit cost ratio which was based on the Boehm’s Law
about defect fix cost. Namely, it was assumed that in
a waterfall project the cost is higher when a defect is
identified in a later project phase and that some savings
can be done by moving well targeted quality assurance
activities to earlier phases. The suggested solution dif-
fers from ours as it operates on class level predictions
and is not focus on iterative projects.

The evaluation methods of defect prediction mod-
els with class as object of prediction were analyzed by
Arisholm et al. [33]. The authors noticed that test ef-
forts for a single class are likely to be proportional to
its size and hence suggested a surrogate measure of
cost–effectiveness that is defined in terms of number of
lines of source code that should be visited according to
the model output. Classes are ordered from high to low
defect probability. Accordingly a curve is defined. The
curve represents the actual defects percentage given
the percentage of lines of code of the selected by pre-
diction model classes. The overall cost–effectiveness
is the surface area between the aforementioned curve
and a baseline that one would obtain on average, if
classes were selected randomly. The authors clearly
stated that the suggested cost–effectiveness measure
is a surrogate one and the evaluation of a real return
of investment requires field data. Nonetheless, a pi-
lot study was conducted and the obtained results were
very promising. The authors have not considered eval-
uation of defect prediction models with other objects
of prediction thus their consideration does not overlap
our work. Measuring test effort using the number of
lines of code were considered also by other researchers
(e.g. Mende and Koschke [34], Kamei et al. [35] or
Zhang et al. [12]) in the form of so called effort aware
defect prediction models. Using number of lines corre-
sponds well with small prediction unit of analysis (e.g.
classes or methods) which is not in line with our solu-
tion. Thus we do not discuss this approach further.

Taipale et al. [3] analyzed how to communicate de-
fect prediction outcomes to practitioners effectively.
Three presentation methods were considered and two
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of them directly refers to the prediction results, those
are:

– Commit hotness ranking – ranking of file changes
sorted by their probability of causing an error.

– Error probability mapping to source – copy of
source of project with an estimate of the error
probability for each line of code.

The first one is in line with our approach, as a de-
fect fix can be delivered in a single commit (it is also
possible in the case of a feature, but less likely), thus
the findings regarding its visualisation are relevant for
us as well. Taipale et al. [3] reported feedback sug-
gesting that the presentation should be more proac-
tive and specifically that there should be an instant re-
sponse when committing source code, which leads to-
wards the available solutions for static code analysis.
The concept is also similar to the just–in–time defect
prediction ([36],[37]) where not only single commit is
used as the unit of analysis but also quick feedback
loop is recommended. The just-in-time approach is fo-
cused on making the unit of analysis small in order to
provide the practitioners with well targeted predictions
whereas in our approach we recommend relatively big
unit of analysis to simplify the defect prediction instal-
lation in a software development process. Nonetheless,
the difference is smaller than one may think. Both, de-
fect fix and feature implementation can be delivered
in a single commit, the trunk based development ap-
proach encourages that to some extent. However, there
are also other approaches, like feature branches, where
a fraction of commits represents work in progress and
cannot be considered as a object of code review nor
testing. That makes expected costs and gains assess-
ment challenging (one of our objectives), especially
when we take into consideration the popularity of dis-
tributed version control systems where two different
operations can be recognized, i.e. committing changes
to local repository and pushing a set of commits to re-
mote repository (and of top of that there is the rebasing
operation that enables altering the history of commits).

5.2. Predicting re–opens

The concept of predicting re–opens has been recog-
nized a couple years ago ([38,25]). Since then a num-
ber of studies on this topic were conducted: [39,40,21,
26,24,27]. Among them we especially would like to
note Shihab et al. [21] as it employs a very similar met-
rics set to the one used in our study. Please note that
the goal of our work does not regard improving quality

of predicting re–opens and thus the similarities with
listed above works are very limited.

6. Discussion and conclusions

The study was motivated by the limited usage of de-
fect prediction in industry. The authors identified four
issues that may create an obstacle in using defect pre-
diction, i.e. the mapping of defects to the prediction
unit of analysis, lack of clear definition of defect pre-
diction data collection program, no method of estimat-
ing return of investment and poor tool support. The is-
sues were addressed with propositions of changes in
the method and application of defect prediction. It was
shown how to implement the defect prediction in a
software development process and other objects of pre-
diction than the commonly used were suggested, i.e.
defect re–open and feature defectiveness.

The new units of analysis are free of challenges re-
lated to defects mapping (Issue 1). When we predict
re–opens, there is a clear indicator (the output of de-
fect prediction) whether the defect fix shall be tested or
can be released right away. Similar situation is in the
case of features. When the defect prediction indicates
that a feature is defective, it is obvious what should be
tested. The defect prediction data collection program
is much clearer in the suggested approach (Issue 2). It
is safe to assume that releasing a new feature as well
as fixing defect is processed always in the same way.
In Section 2 we presented something that can be con-
sidered as a common denominator of many software
development processes. There are projects that oper-
ates differently, but we defined a clear border of ap-
plicability. And on top of that, a method of assessing
the gains and costs of using defect prediction was pro-
posed (Issue 3). It is challenging to develop produc-
tion ready tool as a part of research, but we managed
to create a prototype (Issue 4). Two Jira plug–ins that
allow further evaluation of suggested defect prediction
model have been developed. The plug–in for re–opens
prediction is available on–line7. The suggested in this
work changes may seem to be insignificant as they are
not far away from ideas suggested by others. How-

7https://www.researchgate.net/publication/

271735579_Reopens_prediction_Jira_AddOn_-_prototype

whereas the one for predicting feature defectiveness can be down-
loaded from https://www.researchgate.net/publication/

272175560_Predicting_defectiveness_Jira_AddOn_-_

prototype.

https://www.researchgate.net/publication/271735579_Reopens_prediction_Jira_AddOn_-_prototype
https://www.researchgate.net/publication/271735579_Reopens_prediction_Jira_AddOn_-_prototype
https://www.researchgate.net/publication/272175560_Predicting_defectiveness_Jira_AddOn_-_prototype
https://www.researchgate.net/publication/272175560_Predicting_defectiveness_Jira_AddOn_-_prototype
https://www.researchgate.net/publication/272175560_Predicting_defectiveness_Jira_AddOn_-_prototype
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ever, when comparing them against other defect pre-
diction studies, almost none of them fulfills the new
requirements and thus do not have clear way for com-
mercial implementation which is not surprising as we
significantly narrowed the scope of application (only
two acceptable units of analysis and some project con-
strains). We do not prove that such studies are inap-
plicable, but we also do not see a scenario or recipe
for implementing them in industry. Researchers rec-
ommendations usually ends up with some abstract ad-
vices like moving quality assurance efforts to other, se-
lected areas or phases. But when applying such advise
by telling a software developer or tester what exactly
should be done or when considering the exact causes
of the defect prediction implementation, we are at loss.
A very interesting solution was suggested by Taipale
et al. [3] which is not in line with our recommenda-
tions. Taipale et al. [3] conducted a study where defect
prediction was developed in a feedback loop with the
practitioners. The results are impressive, but we con-
sider such solution as a very challenging one and hence
we investigated a simpler alternative. We believe that
the feedback driven development was going towards
static code analysis which has good tool support and
thus is already well known by practitioners and pre-
sumably significantly affects their expectations. Static
code analysis is very handy in software development
as it not only points possible defect location but also
explains what presumably is wrong. With such tool the
developers might get reports similar to: "In line 176 of
class Xyz ’=’ was used instead of ’==’". It is obvious
what actions should be executed in response. The de-
veloper can go to the line and change ’=’ to ’==’ or
mark the report as a false positive. It is hardly possi-
ble to beat such reports with defect prediction models
as they operate in a different way. Static code analy-
sis is about interpreting the source code and matching
it against well known and documented patters, i.e. it
is to some extent about looking for the defect itself,
whereas defect prediction is about identifying factors
that increase the possibility of committing a defect. It
could be a reasoning like "if a highly coupled code
is often changed, there is considerable possibility of
having a defect" and when using it in place of static
code analysis tool the developer or tester is presented
with report like "Class Xyz may contain a defect since
it was changed 3 times by 2 different developers and
its CBO is greater than 10". Such advise is less pre-
cise and do not indicate an exact corrective action. The
only thing the developer or tester can do is to review
or unit test the class and hope that it will be enough

to decide whether there is a defect to fix or it is just
a false positive. Please recall the defect report we dis-
cussed in Section 1, it is really challenging for a tester
or developer to decide about corresponding corrective
action.

We recommend against using small unit of predic-
tion (classes or methods) for two reasons. Classes and
methods are the subject of unit tests which are usu-
ally automated and responsible not only for detecting
defects but also for allowing safe refactorings or pre-
venting regression in a continuous manner. Driving the
unit tests with defect prediction results would ignore
those factors and hence might have unpredictable con-
sequences. And there are difficulties in applying the
results to other types of tests. The functional, accep-
tance, integration or contract (the list may go on) tests
aim at artifacts that consist of a number of classes and
methods. In the case of some test scenarios, e.g. when
testing a feature, a class may be even only partly in-
volved. As a consequence it is not obvious how such
tests should be prioritized to correspond well with out-
comes of class level defect prediction. When the de-
fect prediction is trained using such data, its outcomes
are not very usable for practitioners. Obstacles regard-
ing non unit tests can be overcome as many compa-
nies collect data about traceability and are at least able
to identify relations between classes, features and test
scenarios. There is room for interpretation in mapping
class or method level prediction results on large arti-
facts thus we consider that as interesting direction of
further research. We did not investigate it in this work
as we do not see other than manual inspection solution
to the low quality of class level data issue which would
make the industrial application challenging.

The second reason regards the quality of training
data. We discussed a defect report in the Section 1 that
represents a real system malfunction but did not make
much sense on the class level. It could be questioned
whether the defect report is representational. It is very
challenging to assess the quality of file or class level
training data. We believe that it can be reliably done
only by manual analysis of each file marked to be de-
fective by experts with project domain knowledge, that
is involving the developers that developed it. Since it
is not feasible and the question of quality of input data
is critical we decided to investigated a sample of files
by ourselves. We do not posses the domain knowledge,
but we have access to the actual changes intended to
fix the defect. We investigated 10 subsequent defect re-
ports of the JEdit project that followed the issue de-
tailed in Section 1 and were in status fixed and could
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be mapped to changed during fixing source code files.
Than we carefully analyzed each of the changed files
and classified it as one of the following:

– detectable_defect – the change removed a defect
from the changed file,

– non_detectable_defect – the change removed a
defect from the changed file but it was an is-
sue that without broader, exceeding the content of
changed file context was undetectable,

– not_a_defect – the change was a side effect of fix-
ing defect in another file, i.e. before the change
the file was as good as after it,

– unclassifiable – we were not able to classify the
file to one of the aforementioned categories.

The results of the classification are as follows: de-
tectable_defect = 5, non_detectable_defect = 4,
not_a_defect = 7, unclassifiable = 4, and are available
online with comments explaining our reasoning8. The
reliability of those results is questionable as the sam-
ple is small and did not involved people with knowl-
edge required to grasp project insights. Nonetheless,
we cannot ignore the fact that only less than the half
of the files contains a defect, and only quarter of
them was considered to be detectable. If those results
are close to the reality, the defect prediction signifi-
cantly suffers from the ’garbage in, garbage out’ anti–
pattern which makes significant point against using
fine-grained unit of analysis in defect prediction stud-
ies. Please note, that besides the discrepancy between
files changed within defect fix and defective files there
are well known challenges with issue reports misclas-
sification (Antoniol et al. [28] or Herzig et al.[41]), i.e.
enhancements are labelled as defects and vice versa
which according to Bird et al. [42] can be related to
a bias. There are also minor issues regarding quality
of defect data like the reported by Ostrand et al. [43]
inaccuracies in severity ratings.

The suggested in this work improvements were
tested in a simulation conducted on real world, open–
source projects. The conducted experiments showed
that the usage of defect prediction can produce sub-
stantial savings. When applying the prediction accord-
ing to recommendations presented in this work, the
tests efforts can be significantly reduced, i.e. more than
thousand of man–hours in the case of predicting re–
opens (i.e. up to 90% of the overall bugfixing testing
effort – please note that such impressive results may be

8https://drive.google.com/open?id=14XAb_XHQNgN_

NYSamKpJSgKKHBx4ip1GjBptUoUN2qc

obtained only for projects where the majority of bug-
fixes is correct). Savings were obtained for almost all
projects and classifiers, but the results have noticeable
variance. There are differences between projects and
between classifiers within specific project. Thus we be-
lieve that it is not challenging to get re–opens predic-
tions leading to savings, but there are no guarantees.
There is some risk of having low quality prediction that
results in releasing defects. The risk should be taken
into consideration when deciding if the defect predic-
tion is the right choice as the study results suggest that
we will have savings on average but not for each case.

The study was conducted on a limited number of
projects. Specifically, we did not simulate the ef-
fect of predicting feature defectiveness. Predicting de-
fects re–opens is relevant only for bugfixing activities,
whereas implementing new features can happen in ev-
ery project iteration. Unfortunately, collecting feature
level data from open–source projects is challenging.
The development of a feature may be extended over
long period of time and tracing feature dependant ar-
tifacts without comprehensive project specific knowl-
edge is hardly possible. We increased the number of
projects investigated with respect to predicting defect
re–opens by reusing Shihab et al. [21] experiments
data in our model for defect prediction costs and gains
assessment. We obtained encouraging results that are
in line with our own experiments regarding Flume and
Oozie projects. Nonetheless, further research regard-
ing additional projects and different type of artifacts
(i.e. features) should be considered. Particularly inter-
esting are proprietary projects that employ manual test
as this is the primary target of the suggested approach.

Prototypes that can be installed in an issue tracking
system were developed. Nonetheless, we consider the
study only as a promising proof of concept and foun-
dation for further research. We are planning a tool for
software engineers, but before designing it, we are go-
ing to at least improve external validity and identify a
reasonable set of useful independent variables.
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